Bondarko's work on local Galois modules Part II: How he did it

Kevin Keating Department of Mathematics University of Florida

May 22, 2018

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_K : K^{\times} \to \mathbb{Z}$, whose residue field \overline{K} is a perfect field of characteristic p. Also let

$$\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : v_{\mathcal{K}}(\alpha) \ge 0 \}$$

= ring of integers of \mathcal{K}

 $\pi_{\mathcal{K}} =$ uniformizer for $\mathcal{O}_{\mathcal{K}}$ (i.e., $v_{\mathcal{K}}(\pi_{\mathcal{K}}) = 1$)

$$\mathcal{M}_{\mathcal{K}} = \pi_{\mathcal{K}} \mathcal{O}_{\mathcal{K}}$$

= unique maximal ideal of $\mathcal{O}_{\mathcal{K}}$

Let L/K be a finite totally ramified Galois extension of degree q, and set G = Gal(L/K).

A Pairing on L[G]

By viewing elements of L[G] as *K*-endomorphisms of *L* we get an isomorphism $L[G] \cong \operatorname{End}_{K}(L)$. If we replace L[G] with the smash product L # K[G] this becomes an isomorphism of *K*-algebras.

Define a K-bilinear pairing $L[G] \times L[G] \rightarrow K$ by

$$\left\langle \sum_{\sigma \in G} a_{\sigma} \sigma, \sum_{\sigma \in G} b_{\sigma} \sigma \right\rangle_{L[G]} = \sum_{\sigma \in G} \operatorname{Tr}_{L/K}(a_{\sigma} b_{\sigma}).$$

It follows from the nondegeneracy of the trace pairing that $\langle , \rangle_{L[G]}$ is nondegenerate.

A Pairing on $L \otimes_{\kappa} L$

Define a K-bilinear pairing $(L \otimes_{\kappa} L) \times (L \otimes_{\kappa} L) \to K$ by setting

$$\langle a \otimes b, c \otimes d \rangle_{\otimes} = \operatorname{Tr}_{L/K}(ac) \cdot \operatorname{Tr}_{L/K}(bd).$$

Then $\langle \ , \ \rangle_{\otimes}$ is well-defined.

Proposition

 $\langle \;,\,\rangle_{\otimes}$ is nondegenerate.

Proof: Let $\{x_1, x_2, \ldots, x_q\}$ be a basis for L over K, and let A be the matrix of the trace pairing $L \times L \to K$ with respect to this basis.

Then the matrix *B* of $\langle , \rangle_{\otimes}$ with respect to the *K*-basis $\{x_i \otimes x_j : 1 \leq i, j \leq q\}$ for $L \otimes_{\kappa} L$ is a Kronecker product of *A* with itself. Since *A* is invertible, so is *B*.

The Maps ϕ and ψ_{σ}

Let $T = \sum_{\sigma \in G} \sigma$ be the trace element of L[G]. Define a K-linear map $\phi : L \otimes_{K} L \to L[G]$ by

$$\phi(\mathsf{a}\otimes\mathsf{b})=\mathsf{a}\mathsf{T}\mathsf{b}=\sum_{\sigma\in\mathsf{G}}\mathsf{a}\sigma(\mathsf{b})\cdot\sigma.$$

Then for $\alpha \in L \otimes_{\mathcal{K}} L$ we get

$$\phi(\alpha) = \sum_{\sigma \in G} \psi_{\sigma}(\alpha) \sigma.$$

For $c \in L$ we have

$$\phi(a \otimes b)(c) = \sum_{\sigma \in G} a \cdot \sigma(bc) = a \operatorname{Tr}_{L/K}(bc).$$

ϕ is an isometry

Proposition

For
$$\alpha, \beta \in L \otimes_{\kappa} L$$
 we have $\langle \phi(\alpha), \phi(\beta) \rangle_{L[G]} = \langle \alpha, \beta \rangle_{\otimes}$.

Proof: Let $a, b, c, d \in L$. Then

$$\begin{split} \langle \phi(a \otimes b), \phi(c \otimes d) \rangle_{L[G]} &= \left\langle \sum_{\sigma \in G} a\sigma(b)\sigma, \sum_{\sigma \in G} c\sigma(d)\sigma \right\rangle_{L[G]} \\ &= \sum_{\sigma \in G} \operatorname{Tr}_{L/K}(ac \cdot \sigma(bd)) \\ &= \operatorname{Tr}_{L/K}(ac) \cdot \operatorname{Tr}_{L/K}(bd) \\ &= \langle a \otimes b, c \otimes d \rangle_{\otimes}. \end{split}$$

The claim follows from this.

ϕ is an isomorphism

Proposition

 ϕ is an isomorphism of K-vector spaces.

Proof: Suppose $\alpha \in \text{ker}(\phi)$. Then for all $\beta \in L \otimes_{\mathcal{K}} L$ we get

$$\langle \alpha, \beta \rangle_{\otimes} = \langle \phi(\alpha), \phi(\beta) \rangle_{L[G]} = \langle \mathbf{0}, \phi(\beta) \rangle_{L[G]} = \mathbf{0}.$$

Hence $\alpha = 0$ by the nondegeneracy of $\langle \ , \ \rangle_{\otimes}$. Therefore ϕ is one-to-one.

Since dim $(L \otimes_{\kappa} L) = \dim(L[G]) = q^2$ it follows that ϕ is also onto.

Some Lattices in L[G] and K[G]

Let I_1 and I_2 be fractional ideals of \mathcal{O}_L . Define

$$\mathfrak{C}(I_1, I_2) = \operatorname{Hom}_{\mathcal{O}_{\mathcal{K}}}(I_1, I_2)$$

$$\mathfrak{A}(I_1, I_2) = \mathfrak{C}(I_1, I_2) \cap \mathcal{K}[G]$$

$$\mathfrak{A}(I_1) = \mathfrak{A}(I_1, I_1).$$

Let $\mathfrak{D} = \mathcal{M}_L^d$ denote the different of the extension L/K.

Duals of Lattices

Definition

Suppose M and N are \mathcal{O}_{K} -lattices in L. Let M^{*} denote the dual of M with respect to the trace pairing, and let $(M \otimes_{\mathcal{O}_{K}} N)^{*}$ denote the dual of $M \otimes_{\mathcal{O}_{K}} N$ with respect to $\langle , \rangle_{\otimes}$.

Lemma

Let M, N be \mathcal{O}_{K} -lattices in L. Then $(M \otimes_{\mathcal{O}_{K}} N)^{*} = M^{*} \otimes_{\mathcal{O}_{K}} N^{*}$.

Proof: Let $\{x_1, \ldots, x_q\}$, $\{y_1, \ldots, y_q\}$ be \mathcal{O}_K -bases for M, N. Let $\{x_1^*, \ldots, x_q^*\}$, $\{y_1^*, \ldots, y_q^*\}$ be the dual bases with respect to the trace pairing. Then $\{x_i \otimes y_j : 1 \leq i, j \leq q\}$ is an \mathcal{O}_K -basis for $M \otimes_{\mathcal{O}_K} N$, and $\{x_i^* \otimes y_j^* : 1 \leq i, j \leq q\}$ is the dual basis with respect to $\langle , \rangle_{\otimes}$. Hence

$$(M \otimes_{\mathcal{O}_{\mathcal{K}}} N)^* = \operatorname{Span}_{\mathcal{O}_{\mathcal{K}}} \{ x_i^* \otimes y_j^* : 1 \leq i, j \leq q \} = M^* \otimes_{\mathcal{O}_{\mathcal{K}}} N^*.$$

Characterizing $\mathfrak{C}(I_1, I_2)$

Proposition $\phi(l_2 \otimes \mathfrak{D}^{-1}l_1^{-1}) = \mathfrak{C}(l_1, l_2)$

Proof: First, if $a \in l_2$, $b \in \mathfrak{D}^{-1}l_1^{-1}$, and $x \in l_1$ then $\phi(a \otimes b)(x) = a \operatorname{Tr}_{L/K}(bx)$. Since $bx \in \mathfrak{D}^{-1}$ we get $\operatorname{Tr}_{L/K}(bx) \in \mathcal{O}_K$, and hence $\phi(a \otimes b)(x) \in l_2$. Thus $\phi(l_2 \otimes \mathfrak{D}^{-1}l_1^{-1}) \subset \mathfrak{C}(l_1, l_2)$.

Now let $f \in \mathfrak{C}(I_1, I_2)$. Define

$$\theta_f:\mathfrak{D}^{-1}I_2^{-1}\otimes_{\mathcal{O}_K}I_1\longrightarrow \mathcal{O}_K$$

by setting

$$\theta_f(a \otimes b) = \operatorname{Tr}_{L/K}(af(b)).$$

Then θ_f is an \mathcal{O}_K -module homomorphism.

Characterizing $\mathfrak{C}(I_1, I_2) \dots$

By the nondegeneracy of $\langle , \rangle_{\otimes}$ there is $\alpha \in L \otimes_{\mathcal{K}} L$ such that $\theta_f(\beta) = \langle \alpha, \beta \rangle_{\otimes}$ for all $\beta \in \mathfrak{D}^{-1} I_2^{-1} \otimes_{\mathcal{O}_{\mathcal{K}}} I_1$.

It follows from the lemma that

$$\alpha \in (\mathfrak{D}^{-1}l_2^{-1} \otimes_{\mathcal{O}_{\mathcal{K}}} l_1)^* = (\mathfrak{D}^{-1}l_2^{-1})^* \otimes_{\mathcal{O}_{\mathcal{K}}} l_1^*$$
$$= \mathfrak{D}^{-1}(\mathfrak{D}^{-1}l_2^{-1})^{-1} \otimes \mathfrak{D}^{-1}l_1^{-1}$$
$$= l_2 \otimes \mathfrak{D}^{-1}l_1^{-1}.$$

Characterizing $\mathfrak{C}(I_1, I_2) \dots$

We have
$$f = \sum_{\sigma \in G} a_{\sigma} \sigma$$
 for some $a_{\sigma} \in L$. For $x \in \mathfrak{D}^{-1} I_2^{-1}$, $y \in I_1$ we get

$$\begin{split} \langle \phi(\alpha), \phi(x \otimes y) \rangle_{L[G]} &= \langle \alpha, x \otimes y \rangle_{\otimes} \\ &= \theta_f(x \otimes y) \\ &= \mathsf{Tr}_{L/K}(xf(y)) \\ &= \sum_{\sigma \in G} \mathsf{Tr}_{L/K}(a_\sigma \cdot x\sigma(y)) \\ &= \left\langle \sum_{\sigma \in G} a_\sigma \sigma, \sum_{\sigma \in G} x\sigma(y) \sigma \right\rangle_{L[G]} \\ &= \langle f, \phi(x \otimes y) \rangle_{L[G]}. \end{split}$$

Hence for all $\beta \in L \otimes_{\mathcal{K}} L$ we have $\langle \phi(\alpha), \phi(\beta) \rangle_{L[G]} = \langle f, \phi(\beta) \rangle_{L[G]}$. It follows from the nondegeneracy of $\langle , \rangle_{L[G]}$ that $\phi(\alpha) = f$.

A partial order

Let $H = \langle (q, -q) \rangle \leq \mathbb{Z} imes \mathbb{Z}$

For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ write [a, b] = (a, b) + H.

For $[a, b], [c, d] \in (\mathbb{Z} \times \mathbb{Z})/H$ say $[a, b] \leq [c, d]$ if there is $t \in \mathbb{Z}$ such that $a \leq c + tq$ and $b \leq d - tq$.

Lemma

Let $[h, k], [a, b] \in (\mathbb{Z} \times \mathbb{Z})/H$. Then

 $[h,k] \not\leq [a,b] \Leftrightarrow [a+1,b-q+1] \leq [h,k].$

Proof: Suppose $[h, k] \not\leq [a, b]$. We may assume that $h \leq a \leq h + q - 1$. Then $k \geq b + 1$. Hence

$$[a+1, b-q+1] = [a-q+1, b+1] \le [h, k].$$

The proof of the converse is similar.

Diagrams

We have coset representatives for $(\mathbb{Z} \times \mathbb{Z})/H$:

$$\mathcal{F} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 0 \le b < q\}$$

Let \mathcal{T} be the set of Teichmüller representatives of K. Given $\beta \in L \otimes_k L$ there are $a_{ij} \in \mathcal{T}$ such that

$$\beta = \sum_{(i,j)\in\mathcal{F}} \mathsf{a}_{ij} \pi_L^i \otimes \pi_L^j.$$

Define

 $R(\beta) = \{[i, j] : (i, j) \in \mathcal{F}, a_{ij} \neq 0\}$ $D(\beta) = \{[h, k] \in (\mathbb{Z} \times \mathbb{Z})/H : [i, j] \leq [h, k] \text{ for some } [i, j] \in R(\beta)\}$ $G(\beta) = \{[a, b] \in D(\beta) : [a, b] \text{ minimal } \}.$

Shifts Associated to $[a, b] \in G(\beta)$

Theorem

Let $\beta \in L \otimes_{\kappa} L$ and let $[a, b] \in G(\beta)$. Then for all $y \in L$ with $v_L(y) = -b - i_0$ we have $v_L(\phi(\beta)(y)) = a$.

Proof: It follows from the minimality of [a, b] that for all $[h, k] \in D(\beta) \setminus \{[a, b]\}$ we have $[h, k] \not\leq [a, b]$. It follows by the lemma that $[a + 1, b - q + 1] \leq [h, k]$.

Therefore there are $c_{ij} \in \mathcal{T}$ and $c \in \mathcal{T} \smallsetminus \{0\}$ with

$$\beta = c\pi_L^a \otimes \pi_L^b + (\pi_L^{a+1} \otimes \pi_L^{b-q+1}) \sum_{i,j \ge 0} c_{ij}\pi_L^i \otimes \pi_L^j$$
$$\phi(\beta)(y) = c\pi_L^a \operatorname{Tr}_{L/K}(\pi_L^b y) + \sum_{i,j \ge 0} c_{ij}\pi_L^{a+1+i} \operatorname{Tr}_{L/K}(\pi_L^{b-q+1+j} y).$$

Shifts Associated to $[a, b] \in G(\beta) \dots$

Since
$$v_L(\pi_L^b y) = -i_0$$
 we have $v_K(\operatorname{Tr}_{L/K}(\pi_L^b y)) = 0$. Hence
 $v_L(c\pi_L^a\operatorname{Tr}_{L/K}(\pi_L^b y)) = a$.

In addition, since

$$v_L(\pi_L^{b-q+1+j}y) \ge -i_0 - q + 1 = -d$$

we have $\operatorname{Tr}_{L/K}(\pi_L^{b-q+1+j}y) \in \mathcal{O}_K$, and hence

$$v_L(\pi_L^{a+1+i}\mathrm{Tr}_{L/K}(\pi_L^{b-q+1+j}y)) > a.$$

We conclude that $v_L(\phi(\beta)(y)) = a$.

Shifts of Endomorphisms of L

Theorem

Let $\beta \in L \otimes_{\kappa} L$ with $\beta \neq 0$ and let $u \in \mathbb{Z}$. Let $b \in \mathbb{Z}$ be maximum such that $b \leq u$ and $[a, b] \in G(\beta)$ for some a. Then

$$\min\{v_L(\phi(\beta)(x)): v_L(x) = -i_0 - u\} = a.$$

Proof: If b = u then the claim follows from the previous theorem.

Suppose b < u. Our choice of b implies that $[a - 1, u] \notin D(\beta)$. Therefore for all $[h, k] \in D(\beta)$ we have $[h, k] \nleq [a - 1, u]$. Hence by the lemma we get $[a, u - q + 1] \leq [h, k]$.

Shifts of Endomorphisms of L . . .

It follows that there are $c_{ij} \in \mathcal{T}$ such that

$$\beta = (\pi_L^a \otimes \pi_L^{u-q+1}) \sum_{i,j \ge 0} c_{ij} \pi_L^i \otimes \pi_L^j.$$

Let $x \in L$ with $v_L(x) = -i_0 - u$. Then

$$\phi(\beta)(x) = \sum_{i,j\geq 0} c_{ij} \pi_L^{a+i} \operatorname{Tr}_{L/K}(\pi_L^{u-q+1+j}x).$$

Since

$$v_L(\pi_L^{u-q+1+j}x) \geq -i_0-q+1 = -d$$

we have $\operatorname{Tr}_{L/K}(\pi_L^{u-q+1+j}x) \in \mathcal{O}_K$. Hence $v_L(\phi(\beta)(x)) \geq a$.

Shifts of Endomorphisms of *L* . . .

Suppose $v_L(\beta(x)) > a$. There is $y \in L$ with

$$v_L(y) = -i_0 - b > -i_0 - u = v_L(x)$$

and hence

$$\mathsf{v}_{\mathsf{L}}(\phi(eta)(y)) = \mathsf{a} < \mathsf{v}_{\mathsf{L}}(\phi(eta)(x))$$

by the previous theorem. It follows that

$$v_L(x+y) = -i_0 - u$$

$$v_L(\beta(x+y)) = v_L(\beta(x) + \beta(y)) = a.$$

Hence we can choose x with $v_L(x) = -i_0 - u$ and $v_L(\phi(\beta)(x)) = a$.

Some Definitions

For $\gamma \in \operatorname{End}_{\kappa}(L) \cong L[G]$ set $\hat{v}_{L}(\gamma) = \min\{v_{L}(\gamma(x)) - v_{L}(x) : x \in L^{\times}\}.$ For $n \in \mathbb{Z}$ let

$$\mathfrak{C}_n = \{ \gamma \in \operatorname{End}_{\mathcal{K}}(L) : \hat{\mathbf{v}}_L(\gamma) \geq n \}.$$

Also let X_n be the \mathcal{O}_K -submodule of $L \otimes_K L$ generated by all elements of the form $c \otimes d$, with $v_L(c) + v_L(d) \ge n$.

Characterizing \mathfrak{C}_n

Theorem

Let $n \in \mathbb{Z}$. Then $\phi(X_{n-i_0}) = \mathfrak{C}_n$.

Proof: Let $c \otimes d \in L \otimes L$ with $v_L(c) = h$, $v_L(d) = k$ such that $h + k \ge n - i_0$. Let $x \in L^{\times}$ satisfy $v_L(x) = -i_0 - u$ and $k \le u < k + q$. We have $G(c \otimes d) = \{[h, k]\}$, so by the previous theorem we get

$$egin{aligned} & \mathsf{v}_L(\phi(c\otimes d)(x))-\mathsf{v}_L(x)\geq h-(-i_0-u)\ &\geq h+i_0+k\ &\geq n. \end{aligned}$$

Hence $\phi(X_{n-i_0}) \subset \mathfrak{C}_n$.

Characterizing $\mathfrak{C}_n \ldots$

On the other hand, suppose $\beta \in L \otimes_{\kappa} L$ satisfies $\phi(\beta) \in \mathfrak{C}_n$.

By the previous theorem but one we get $a - (-i_0 - b) \ge n$ for all $[a, b] \in G(\beta)$.

It follows that $h + k + i_0 \ge n$ for all $[h, k] \in D(\beta)$. Hence $\beta \in X_{n-i_0}$.

We conclude that $\mathfrak{C}_n \subset \phi(X_{n-i_0})$.