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Local Fields

Let K be a field which is complete with respect to a discrete
valuation vK : K× → Z, whose residue field K is a perfect field of
characteristic p. Also let

OK = {α ∈ K : vK (α) ≥ 0}
= ring of integers of K

πK = uniformizer for OK (i. e., vK (πK ) = 1)

MK = πKOK

= unique maximal ideal of OK

Let L/K be a finite totally ramified Galois extension of degree q, and
set G = Gal(L/K ).



A Pairing on L[G ]

By viewing elements of L[G ] as K -endomorphisms of L we get an
isomorphism L[G ] ∼= EndK (L). If we replace L[G ] with the smash
product L#K [G ] this becomes an isomorphism of K -algebras.

Define a K -bilinear pairing L[G ]× L[G ]→ K by〈∑
σ∈G

aσσ,
∑
σ∈G

bσσ
〉

L[G]

=
∑
σ∈G

TrL/K (aσbσ).

It follows from the nondegeneracy of the trace pairing that 〈 , 〉L[G] is
nondegenerate.



A Pairing on L⊗K L
Define a K -bilinear pairing (L⊗K L)× (L⊗K L)→ K by setting

〈a ⊗ b, c ⊗ d〉⊗ = TrL/K (ac) · TrL/K (bd).

Then 〈 , 〉⊗ is well-defined.

Proposition
〈 , 〉⊗ is nondegenerate.

Proof: Let {x1, x2, . . . , xq} be a basis for L over K , and let A be the
matrix of the trace pairing L× L→ K with respect to this basis.

Then the matrix B of 〈 , 〉⊗ with respect to the K -basis
{xi ⊗ xj : 1 ≤ i , j ≤ q} for L⊗K L is a Kronecker product of A with
itself. Since A is invertible, so is B.



The Maps φ and ψσ
Let T =

∑
σ∈G

σ be the trace element of L[G ]. Define a K -linear map

φ : L⊗K L→ L[G ] by

φ(a ⊗ b) = aTb =
∑
σ∈G

aσ(b) · σ.

Then for α ∈ L⊗K L we get

φ(α) =
∑
σ∈G

ψσ(α)σ.

For c ∈ L we have

φ(a ⊗ b)(c) =
∑
σ∈G

a · σ(bc) = aTrL/K (bc).



φ is an isometry

Proposition
For α, β ∈ L⊗K L we have 〈φ(α), φ(β)〉L[G] = 〈α, β〉⊗.

Proof: Let a, b, c , d ∈ L. Then

〈φ(a ⊗ b), φ(c ⊗ d)〉L[G] =
〈∑
σ∈G

aσ(b)σ,
∑
σ∈G

cσ(d)σ
〉

L[G]

=
∑
σ∈G

TrL/K (ac · σ(bd))

= TrL/K (ac) · TrL/K (bd)
= 〈a ⊗ b, c ⊗ d〉⊗.

The claim follows from this.



φ is an isomorphism

Proposition
φ is an isomorphism of K-vector spaces.

Proof: Suppose α ∈ ker(φ). Then for all β ∈ L⊗K L we get

〈α, β〉⊗ = 〈φ(α), φ(β)〉L[G] = 〈0, φ(β)〉L[G] = 0.

Hence α = 0 by the nondegeneracy of 〈 , 〉⊗. Therefore φ is
one-to-one.

Since dim(L⊗K L) = dim(L[G ]) = q2 it follows that φ is also onto.



Some Lattices in L[G ] and K [G ]

Let I1 and I2 be fractional ideals of OL. Define

C(I1, I2) = HomOK (I1, I2)
A(I1, I2) = C(I1, I2) ∩ K [G ]

A(I1) = A(I1, I1).

Let D =Md
L denote the different of the extension L/K .



Duals of Lattices
Definition
Suppose M and N are OK -lattices in L. Let M∗ denote the dual of
M with respect to the trace pairing, and let (M ⊗OK N)∗ denote the
dual of M ⊗OK N with respect to 〈 , 〉⊗.

Lemma
Let M,N be OK -lattices in L. Then (M ⊗OK N)∗ = M∗ ⊗OK N∗.

Proof: Let {x1, . . . , xq}, {y1, . . . , yq} be OK -bases for M,N . Let
{x∗1 , . . . , x∗q}, {y ∗1 , . . . , y ∗q} be the dual bases with respect to the
trace pairing. Then {xi ⊗ yj : 1 ≤ i , j ≤ q} is an OK -basis for
M ⊗OK N , and {x∗i ⊗ y ∗j : 1 ≤ i , j ≤ q} is the dual basis with respect
to 〈 , 〉⊗. Hence

(M ⊗OK N)∗ = SpanOK
{x∗i ⊗ y ∗j : 1 ≤ i , j ≤ q} = M∗ ⊗OK N∗.



Characterizing C(I1, I2)

Proposition
φ(I2 ⊗D−1I−1

1 ) = C(I1, I2)

Proof: First, if a ∈ I2, b ∈ D−1I−1
1 , and x ∈ I1 then

φ(a ⊗ b)(x) = aTrL/K (bx). Since bx ∈ D−1 we get TrL/K (bx) ∈ OK ,
and hence φ(a ⊗ b)(x) ∈ I2. Thus φ(I2 ⊗D−1I−1

1 ) ⊂ C(I1, I2).

Now let f ∈ C(I1, I2). Define

θf : D−1I−1
2 ⊗OK I1 −→ OK

by setting
θf (a ⊗ b) = TrL/K (af (b)).

Then θf is an OK -module homomorphism.



Characterizing C(I1, I2) . . .

By the nondegeneracy of 〈 , 〉⊗ there is α ∈ L⊗K L such that
θf (β) = 〈α, β〉⊗ for all β ∈ D−1I−1

2 ⊗OK I1.

It follows from the lemma that

α ∈ (D−1I−1
2 ⊗OK I1)∗ = (D−1I−1

2 )∗ ⊗OK I∗1
= D−1(D−1I−1

2 )−1 ⊗D−1I−1
1

= I2 ⊗D−1I−1
1 .



Characterizing C(I1, I2) . . .
We have f =

∑
σ∈G

aσσ for some aσ ∈ L. For x ∈ D−1I−1
2 , y ∈ I1 we

get

〈φ(α), φ(x ⊗ y)〉L[G] = 〈α, x ⊗ y〉⊗
= θf (x ⊗ y)
= TrL/K (xf (y))
=

∑
σ∈G

TrL/K (aσ · xσ(y))

=
〈∑
σ∈G

aσσ,
∑
σ∈G

xσ(y)σ
〉

L[G]

= 〈f , φ(x ⊗ y)〉L[G].

Hence for all β ∈ L⊗K L we have 〈φ(α), φ(β)〉L[G] = 〈f , φ(β)〉L[G]. It
follows from the nondegeneracy of 〈 , 〉L[G] that φ(α) = f .



A partial order
Let H = 〈(q,−q)〉 ≤ Z× Z

For (a, b) ∈ Z× Z write [a, b] = (a, b) + H .

For [a, b], [c , d ] ∈ (Z× Z)/H say [a, b] ≤ [c , d ] if there is t ∈ Z such
that a ≤ c + tq and b ≤ d − tq.

Lemma
Let [h, k], [a, b] ∈ (Z× Z)/H. Then

[h, k] 6≤ [a, b]⇔ [a + 1, b − q + 1] ≤ [h, k].

Proof: Suppose [h, k] 6≤ [a, b]. We may assume that
h ≤ a ≤ h + q − 1. Then k ≥ b + 1. Hence

[a + 1, b − q + 1] = [a − q + 1, b + 1] ≤ [h, k].

The proof of the converse is similar.



Diagrams
We have coset representatives for (Z× Z)/H :

F = {(a, b) ∈ Z× Z : 0 ≤ b < q}

Let T be the set of Teichmüller representatives of K .

Given β ∈ L⊗k L there are aij ∈ T such that

β =
∑

(i ,j)∈F
aijπ

i
L ⊗ π

j
L.

Define

R(β) = {[i , j ] : (i , j) ∈ F , aij 6= 0}
D(β) = {[h, k] ∈ (Z× Z)/H : [i , j ] ≤ [h, k] for some [i , j ] ∈ R(β)}
G(β) = {[a, b] ∈ D(β) : [a, b] minimal }.



Shifts Associated to [a, b] ∈ G(β)

Theorem
Let β ∈ L⊗K L and let [a, b] ∈ G(β). Then for all y ∈ L with
vL(y) = −b − i0 we have vL(φ(β)(y)) = a.

Proof: It follows from the minimality of [a, b] that for all
[h, k] ∈ D(β) r {[a, b]} we have [h, k] 6≤ [a, b]. It follows by the
lemma that [a + 1, b − q + 1] ≤ [h, k].

Therefore there are cij ∈ T and c ∈ T r {0} with

β = cπa
L ⊗ πb

L + (πa+1
L ⊗ πb−q+1

L )
∑
i ,j≥0

cijπ
i
L ⊗ π

j
L

φ(β)(y) = cπa
LTrL/K (πb

Ly) +
∑
i ,j≥0

cijπ
a+1+i
L TrL/K (πb−q+1+j

L y).



Shifts Associated to [a, b] ∈ G(β) . . .

Since vL(πb
Ly) = −i0 we have vK (TrL/K (πb

Ly)) = 0. Hence

vL(cπa
LTrL/K (πb

Ly)) = a.

In addition, since

vL(πb−q+1+j
L y) ≥ −i0 − q + 1 = −d

we have TrL/K (πb−q+1+j
L y) ∈ OK , and hence

vL(πa+1+i
L TrL/K (πb−q+1+j

L y)) > a.

We conclude that vL(φ(β)(y)) = a.



Shifts of Endomorphisms of L

Theorem
Let β ∈ L⊗K L with β 6= 0 and let u ∈ Z. Let b ∈ Z be maximum
such that b ≤ u and [a, b] ∈ G(β) for some a. Then

min{vL(φ(β)(x)) : vL(x) = −i0 − u} = a.

Proof: If b = u then the claim follows from the previous theorem.

Suppose b < u. Our choice of b implies that [a − 1, u] 6∈ D(β).
Therefore for all [h, k] ∈ D(β) we have [h, k] 6≤ [a − 1, u]. Hence by
the lemma we get [a, u − q + 1] ≤ [h, k].



Shifts of Endomorphisms of L . . .

It follows that there are cij ∈ T such that

β = (πa
L ⊗ π

u−q+1
L )

∑
i ,j≥0

cijπ
i
L ⊗ π

j
L.

Let x ∈ L with vL(x) = −i0 − u. Then

φ(β)(x) =
∑
i ,j≥0

cijπ
a+i
L TrL/K (πu−q+1+j

L x).

Since
vL(πu−q+1+j

L x) ≥ −i0 − q + 1 = −d

we have TrL/K (πu−q+1+j
L x) ∈ OK . Hence vL(φ(β)(x)) ≥ a.



Shifts of Endomorphisms of L . . .

Suppose vL(β(x)) > a. There is y ∈ L with

vL(y) = −i0 − b > −i0 − u = vL(x)

and hence
vL(φ(β)(y)) = a < vL(φ(β)(x))

by the previous theorem. It follows that

vL(x + y) = −i0 − u
vL(β(x + y)) = vL(β(x) + β(y)) = a.

Hence we can choose x with vL(x) = −i0 − u and vL(φ(β)(x)) = a.



Some Definitions

For γ ∈ EndK (L) ∼= L[G ] set

v̂L(γ) = min{vL(γ(x))− vL(x) : x ∈ L×}.

For n ∈ Z let

Cn = {γ ∈ EndK (L) : v̂L(γ) ≥ n}.

Also let Xn be the OK -submodule of L⊗K L generated by all
elements of the form c ⊗ d , with vL(c) + vL(d) ≥ n.



Characterizing Cn

Theorem
Let n ∈ Z. Then φ(Xn−i0) = Cn.

Proof: Let c ⊗ d ∈ L⊗ L with vL(c) = h, vL(d) = k such that
h + k ≥ n − i0. Let x ∈ L× satisfy vL(x) = −i0 − u and
k ≤ u < k + q. We have G(c ⊗ d) = {[h, k]}, so by the previous
theorem we get

vL(φ(c ⊗ d)(x))− vL(x) ≥ h − (−i0 − u)
≥ h + i0 + k
≥ n.

Hence φ(Xn−i0) ⊂ Cn.



Characterizing Cn . . .

On the other hand, suppose β ∈ L⊗K L satisfies φ(β) ∈ Cn.

By the previous theorem but one we get a − (−i0 − b) ≥ n for all
[a, b] ∈ G(β).

It follows that h + k + i0 ≥ n for all [h, k] ∈ D(β). Hence β ∈ Xn−i0 .

We conclude that Cn ⊂ φ(Xn−i0).


