Bondarko's work on local Galois modules

Part II: How he did it

Kevin Keating
Department of Mathematics
University of Florida

May 22, 2018

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_{K}: K^{\times} \rightarrow \mathbb{Z}$, whose residue field \bar{K} is a perfect field of characteristic p. Also let

$$
\begin{aligned}
\mathcal{O}_{K} & =\left\{\alpha \in K: v_{K}(\alpha) \geq 0\right\} \\
& =\text { ring of integers of } K \\
\pi_{K} & =\text { uniformizer for } \mathcal{O}_{K}\left(\text { i. e., } v_{K}\left(\pi_{K}\right)=1\right) \\
\mathcal{M}_{K} & =\pi_{K} \mathcal{O}_{K} \\
& =\text { unique maximal ideal of } \mathcal{O}_{K}
\end{aligned}
$$

Let L / K be a finite totally ramified Galois extension of degree q, and set $G=\operatorname{Gal}(L / K)$.

A Pairing on $L[G]$

By viewing elements of $L[G]$ as K-endomorphisms of L we get an isomorphism $L[G] \cong \operatorname{End}_{K}(L)$. If we replace $L[G]$ with the smash product $L \# K[G]$ this becomes an isomorphism of K-algebras.

Define a K-bilinear pairing $L[G] \times L[G] \rightarrow K$ by

$$
\left\langle\sum_{\sigma \in G} a_{\sigma} \sigma, \sum_{\sigma \in G} b_{\sigma} \sigma\right\rangle_{L[G]}=\sum_{\sigma \in G} \operatorname{Tr}_{L / K}\left(a_{\sigma} b_{\sigma}\right)
$$

It follows from the nondegeneracy of the trace pairing that $\langle,\rangle_{L[G]}$ is nondegenerate.

A Pairing on $L \otimes_{K} L$

Define a K-bilinear pairing $\left(L \otimes_{K} L\right) \times\left(L \otimes_{K} L\right) \rightarrow K$ by setting

$$
\langle a \otimes b, c \otimes d\rangle_{\otimes}=\operatorname{Tr}_{L / K}(a c) \cdot \operatorname{Tr}_{L / K}(b d)
$$

Then $\langle,\rangle_{\otimes}$ is well-defined.

Proposition

$\langle,\rangle_{\otimes}$ is nondegenerate.
Proof: Let $\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$ be a basis for L over K, and let A be the matrix of the trace pairing $L \times L \rightarrow K$ with respect to this basis.

Then the matrix B of $\langle,\rangle_{\otimes}$ with respect to the K-basis $\left\{x_{i} \otimes x_{j}: 1 \leq i, j \leq q\right\}$ for $L \otimes_{K} L$ is a Kronecker product of A with itself. Since A is invertible, so is B.

The Maps ϕ and ψ_{σ}

Let $T=\sum_{\sigma \in G} \sigma$ be the trace element of $L[G]$. Define a K-linear map
$\phi: L \otimes_{K} L \rightarrow L[G]$ by

$$
\phi(a \otimes b)=a T b=\sum_{\sigma \in G} a \sigma(b) \cdot \sigma .
$$

Then for $\alpha \in L \otimes_{K} L$ we get

$$
\phi(\alpha)=\sum_{\sigma \in G} \psi_{\sigma}(\alpha) \sigma .
$$

For $c \in L$ we have

$$
\phi(a \otimes b)(c)=\sum_{\sigma \in G} a \cdot \sigma(b c)=a \operatorname{Tr}_{L / K}(b c) .
$$

ϕ is an isometry

Proposition

For $\alpha, \beta \in L \otimes_{K} L$ we have $\langle\phi(\alpha), \phi(\beta)\rangle_{L[G]}=\langle\alpha, \beta\rangle_{\otimes}$.

Proof: Let $a, b, c, d \in L$. Then

$$
\begin{aligned}
\langle\phi(a \otimes b), \phi(c \otimes d)\rangle_{L[G]} & =\left\langle\sum_{\sigma \in G} a \sigma(b) \sigma, \sum_{\sigma \in G} c \sigma(d) \sigma\right\rangle_{L[G]} \\
& =\sum_{\sigma \in G} \operatorname{Tr}_{L / K}(a c \cdot \sigma(b d)) \\
& =\operatorname{Tr}_{L / K}(a c) \cdot \operatorname{Tr}_{L / K}(b d) \\
& =\langle a \otimes b, c \otimes d\rangle_{\otimes} .
\end{aligned}
$$

The claim follows from this.

ϕ is an isomorphism

Proposition

ϕ is an isomorphism of K-vector spaces.

Proof: Suppose $\alpha \in \operatorname{ker}(\phi)$. Then for all $\beta \in L \otimes_{K} L$ we get

$$
\langle\alpha, \beta\rangle_{\otimes}=\langle\phi(\alpha), \phi(\beta)\rangle_{L[G]}=\langle 0, \phi(\beta)\rangle_{L[G]}=0
$$

Hence $\alpha=0$ by the nondegeneracy of $\langle,\rangle_{\otimes}$. Therefore ϕ is one-to-one.

Since $\operatorname{dim}\left(L \otimes_{K} L\right)=\operatorname{dim}(L[G])=q^{2}$ it follows that ϕ is also onto.

Some Lattices in $L[G]$ and $K[G]$

Let I_{1} and I_{2} be fractional ideals of \mathcal{O}_{L}. Define

$$
\begin{aligned}
\mathfrak{C}\left(I_{1}, I_{2}\right) & =\operatorname{Hom}_{\mathcal{O}_{K}}\left(I_{1}, I_{2}\right) \\
\mathfrak{A}\left(I_{1}, I_{2}\right) & =\mathfrak{C}\left(I_{1}, I_{2}\right) \cap K[G] \\
\mathfrak{A}\left(I_{1}\right) & =\mathfrak{A}\left(I_{1}, I_{1}\right) .
\end{aligned}
$$

Let $\mathfrak{D}=\mathcal{M}_{L}^{d}$ denote the different of the extension L / K.

Duals of Lattices

Definition

Suppose M and N are \mathcal{O}_{K}-lattices in L. Let M^{*} denote the dual of M with respect to the trace pairing, and let $\left(M \otimes{ }_{\mathcal{O}_{\kappa}} N\right)^{*}$ denote the dual of $M \otimes \mathcal{O}_{K} N$ with respect to $\langle,\rangle_{\otimes}$.

Lemma

Let M, N be \mathcal{O}_{K}-lattices in L. Then $\left(M \otimes_{\mathcal{O}_{K}} N\right)^{*}=M^{*} \otimes_{\mathcal{O}_{K}} N^{*}$.
Proof: Let $\left\{x_{1}, \ldots, x_{q}\right\},\left\{y_{1}, \ldots, y_{q}\right\}$ be \mathcal{O}_{K}-bases for M, N. Let $\left\{x_{1}^{*}, \ldots, x_{q}^{*}\right\},\left\{y_{1}^{*}, \ldots, y_{q}^{*}\right\}$ be the dual bases with respect to the trace pairing. Then $\left\{x_{i} \otimes y_{j}: 1 \leq i, j \leq q\right\}$ is an \mathcal{O}_{k}-basis for $M \otimes_{\mathcal{O}_{K}} N$, and $\left\{x_{i}^{*} \otimes y_{j}^{*}: 1 \leq i, j \leq q\right\}$ is the dual basis with respect to $\langle,\rangle_{\otimes}$. Hence

$$
\left(M \otimes_{\mathcal{O}_{K}} N\right)^{*}=\operatorname{Span}_{\mathcal{O}_{K}}\left\{x_{i}^{*} \otimes y_{j}^{*}: 1 \leq i, j \leq q\right\}=M^{*} \otimes_{\mathcal{O}_{K}} N^{*} .
$$

Characterizing $\mathfrak{C}\left(I_{1}, I_{2}\right)$

Proposition

$$
\phi\left(I_{2} \otimes \mathfrak{D}^{-1} I_{1}^{-1}\right)=\mathfrak{C}\left(I_{1}, I_{2}\right)
$$

Proof: First, if $a \in I_{2}, b \in \mathfrak{D}^{-1} I_{1}^{-1}$, and $x \in I_{1}$ then $\phi(a \otimes b)(x)=a \operatorname{Tr}_{L / K}(b x)$. Since $b x \in \mathfrak{D}^{-1}$ we get $\operatorname{Tr}_{L / K}(b x) \in \mathcal{O}_{K}$, and hence $\phi(a \otimes b)(x) \in I_{2}$. Thus $\phi\left(I_{2} \otimes \mathfrak{D}^{-1} I_{1}^{-1}\right) \subset \mathfrak{C}\left(I_{1}, I_{2}\right)$.

Now let $f \in \mathfrak{C}\left(I_{1}, I_{2}\right)$. Define

$$
\theta_{f}: \mathfrak{D}^{-1} I_{2}^{-1} \otimes_{\mathcal{O}_{K}} I_{1} \longrightarrow \mathcal{O}_{K}
$$

by setting

$$
\theta_{f}(a \otimes b)=\operatorname{Tr}_{L / K}(a f(b))
$$

Then θ_{f} is an \mathcal{O}_{K}-module homomorphism.

Characterizing $\mathfrak{C}\left(I_{1}, I_{2}\right) \ldots$

By the nondegeneracy of $\langle,\rangle_{\otimes}$ there is $\alpha \in L \otimes_{K} L$ such that $\theta_{f}(\beta)=\langle\alpha, \beta\rangle_{\otimes}$ for all $\beta \in \mathfrak{D}^{-1} I_{2}^{-1} \otimes_{\mathcal{O}_{K}} I_{1}$.

It follows from the lemma that

$$
\begin{aligned}
\alpha \in\left(\mathfrak{D}^{-1} I_{2}^{-1} \otimes_{\mathcal{O}_{K}} I_{1}\right)^{*} & =\left(\mathfrak{D}^{-1} I_{2}^{-1}\right)^{*} \otimes_{\mathcal{O}_{K}} I_{1}^{*} \\
& =\mathfrak{D}^{-1}\left(\mathfrak{D}^{-1} I_{2}^{-1}\right)^{-1} \otimes \mathfrak{D}^{-1} I_{1}^{-1} \\
& =I_{2} \otimes \mathfrak{D}^{-1} I_{1}^{-1} .
\end{aligned}
$$

Characterizing $\mathfrak{C}\left(I_{1}, l_{2}\right) \ldots$

We have $f=\sum_{\sigma \in G} a_{\sigma} \sigma$ for some $a_{\sigma} \in L$. For $x \in \mathfrak{D}^{-1} I_{2}^{-1}, y \in I_{1}$ we get

$$
\begin{aligned}
\langle\phi(\alpha), \phi(x \otimes y)\rangle_{L[G]} & =\langle\alpha, x \otimes y\rangle_{\otimes} \\
& =\theta_{f}(x \otimes y) \\
& =\operatorname{Tr}_{L / K}(x f(y)) \\
& =\sum_{\sigma \in G} \operatorname{Tr}_{L / K}\left(a_{\sigma} \cdot x \sigma(y)\right) \\
& =\left\langle\sum_{\sigma \in G} a_{\sigma} \sigma, \sum_{\sigma \in G} x \sigma(y) \sigma\right\rangle_{L[G]} \\
& =\langle f, \phi(x \otimes y)\rangle_{L[G]}
\end{aligned}
$$

Hence for all $\beta \in L \otimes_{K} L$ we have $\langle\phi(\alpha), \phi(\beta)\rangle_{L[G]}=\langle f, \phi(\beta)\rangle_{L[G]}$. It follows from the nondegeneracy of $\langle,\rangle_{L[G]}$ that $\phi(\alpha)=f$.

A partial order

Let $H=\langle(q,-q)\rangle \leq \mathbb{Z} \times \mathbb{Z}$
For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ write $[a, b]=(a, b)+H$.
For $[a, b],[c, d] \in(\mathbb{Z} \times \mathbb{Z}) / H$ say $[a, b] \leq[c, d]$ if there is $t \in \mathbb{Z}$ such that $a \leq c+t q$ and $b \leq d-t q$.

Lemma

Let $[h, k],[a, b] \in(\mathbb{Z} \times \mathbb{Z}) / H$. Then

$$
[h, k] \not \leq[a, b] \Leftrightarrow[a+1, b-q+1] \leq[h, k] .
$$

Proof: Suppose $[h, k] \not \leq[a, b]$. We may assume that $h \leq a \leq h+q-1$. Then $k \geq b+1$. Hence

$$
[a+1, b-q+1]=[a-q+1, b+1] \leq[h, k] .
$$

The proof of the converse is similar.

Diagrams

We have coset representatives for $(\mathbb{Z} \times \mathbb{Z}) / H$:

$$
\mathcal{F}=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: 0 \leq b<q\}
$$

Let \mathcal{T} be the set of Teichmüller representatives of K.
Given $\beta \in L \otimes_{k} L$ there are $a_{i j} \in \mathcal{T}$ such that

$$
\beta=\sum_{(i, j) \in \mathcal{F}} a_{i j} \pi_{L}^{i} \otimes \pi_{L}^{j} .
$$

Define

$$
\begin{aligned}
& R(\beta)=\left\{[i, j]:(i, j) \in \mathcal{F}, a_{i j} \neq 0\right\} \\
& D(\beta)=\{[h, k] \in(\mathbb{Z} \times \mathbb{Z}) / H:[i, j] \leq[h, k] \text { for some }[i, j] \in R(\beta)\} \\
& G(\beta)=\{[a, b] \in D(\beta):[a, b] \text { minimal }\} .
\end{aligned}
$$

Shifts Associated to $[a, b] \in G(\beta)$

Theorem

Let $\beta \in L \otimes_{K} L$ and let $[a, b] \in G(\beta)$. Then for all $y \in L$ with $v_{L}(y)=-b-i_{0}$ we have $v_{L}(\phi(\beta)(y))=a$.

Proof: It follows from the minimality of $[a, b]$ that for all $[h, k] \in D(\beta) \backslash\{[a, b]\}$ we have $[h, k] \not \subset[a, b]$. It follows by the lemma that $[a+1, b-q+1] \leq[h, k]$.

Therefore there are $c_{i j} \in \mathcal{T}$ and $c \in \mathcal{T} \backslash\{0\}$ with

$$
\begin{aligned}
\beta & =c \pi_{L}^{a} \otimes \pi_{L}^{b}+\left(\pi_{L}^{a+1} \otimes \pi_{L}^{b-q+1}\right) \sum_{i, j \geq 0} c_{i j} \pi_{L}^{i} \otimes \pi_{L}^{j} \\
\phi(\beta)(y) & =c \pi_{L}^{a} \operatorname{Tr}_{L / K}\left(\pi_{L}^{b} y\right)+\sum_{i, j \geq 0} c_{i j} \pi_{L}^{a+1+i} \operatorname{Tr}_{L / K}\left(\pi_{L}^{b-q+1+j} y\right) .
\end{aligned}
$$

Shifts Associated to $[a, b] \in G(\beta) \ldots$

Since $v_{L}\left(\pi_{L}^{b} y\right)=-i_{0}$ we have $v_{K}\left(\operatorname{Tr}_{L / K}\left(\pi_{L}^{b} y\right)\right)=0$. Hence

$$
v_{L}\left(c \pi_{L}^{a} \operatorname{Tr}_{L / K}\left(\pi_{L}^{b} y\right)\right)=a .
$$

In addition, since

$$
v_{L}\left(\pi_{L}^{b-q+1+j} y\right) \geq-i_{0}-q+1=-d
$$

we have $\operatorname{Tr}_{L / K}\left(\pi_{L}^{b-q+1+j} y\right) \in \mathcal{O}_{K}$, and hence

$$
v_{L}\left(\pi_{L}^{a+1+i} \operatorname{Tr}_{L / K}\left(\pi_{L}^{b-q+1+j} y\right)\right)>a
$$

We conclude that $v_{L}(\phi(\beta)(y))=a$.

Shifts of Endomorphisms of L

Theorem

Let $\beta \in L \otimes_{K} L$ with $\beta \neq 0$ and let $u \in \mathbb{Z}$. Let $b \in \mathbb{Z}$ be maximum such that $b \leq u$ and $[a, b] \in G(\beta)$ for some a. Then

$$
\min \left\{v_{L}(\phi(\beta)(x)): v_{L}(x)=-i_{0}-u\right\}=a .
$$

Proof: If $b=u$ then the claim follows from the previous theorem.
Suppose $b<u$. Our choice of b implies that $[a-1, u] \notin D(\beta)$.
Therefore for all $[h, k] \in D(\beta)$ we have $[h, k] \not \subset[a-1, u]$. Hence by the lemma we get $[a, u-q+1] \leq[h, k]$.

Shifts of Endomorphisms of $L \ldots$

It follows that there are $c_{i j} \in \mathcal{T}$ such that

$$
\beta=\left(\pi_{L}^{a} \otimes \pi_{L}^{u-q+1}\right) \sum_{i, j \geq 0} c_{i j} \pi_{L}^{i} \otimes \pi_{L}^{j}
$$

Let $x \in L$ with $v_{L}(x)=-i_{0}-u$. Then

$$
\phi(\beta)(x)=\sum_{i, j \geq 0} c_{i j} \pi_{L}^{a+i} \operatorname{Tr}_{L / K}\left(\pi_{L}^{u-q+1+j} x\right)
$$

Since

$$
v_{L}\left(\pi_{L}^{u-q+1+j^{\prime}} x\right) \geq-i_{0}-q+1=-d
$$

we have $\operatorname{Tr}_{L / K}\left(\pi_{L}^{u-q+1+j^{\prime}} x\right) \in \mathcal{O}_{K}$. Hence $v_{L}(\phi(\beta)(x)) \geq a$.

Shifts of Endomorphisms of $L \ldots$

Suppose $v_{L}(\beta(x))>a$. There is $y \in L$ with

$$
v_{L}(y)=-i_{0}-b>-i_{0}-u=v_{L}(x)
$$

and hence

$$
v_{L}(\phi(\beta)(y))=a<v_{L}(\phi(\beta)(x))
$$

by the previous theorem. It follows that

$$
\begin{aligned}
v_{L}(x+y) & =-i_{0}-u \\
v_{L}(\beta(x+y)) & =v_{L}(\beta(x)+\beta(y))=a .
\end{aligned}
$$

Hence we can choose x with $v_{L}(x)=-i_{0}-u$ and $v_{L}(\phi(\beta)(x))=a$.

Some Definitions

For $\gamma \in \operatorname{End}_{K}(L) \cong L[G]$ set

$$
\hat{v}_{L}(\gamma)=\min \left\{v_{L}(\gamma(x))-v_{L}(x): x \in L^{\times}\right\}
$$

For $n \in \mathbb{Z}$ let

$$
\mathfrak{C}_{n}=\left\{\gamma \in \operatorname{End}_{K}(L): \hat{v}_{L}(\gamma) \geq n\right\} .
$$

Also let X_{n} be the \mathcal{O}_{K}-submodule of $L \otimes_{K} L$ generated by all elements of the form $c \otimes d$, with $v_{L}(c)+v_{L}(d) \geq n$.

Characterizing \mathfrak{C}_{n}

Theorem
Let $n \in \mathbb{Z}$. Then $\phi\left(X_{n-i_{0}}\right)=\mathfrak{C}_{n}$.

Proof: Let $c \otimes d \in L \otimes L$ with $v_{L}(c)=h, v_{L}(d)=k$ such that $h+k \geq n-i_{0}$. Let $x \in L^{\times}$satisfy $v_{L}(x)=-i_{0}-u$ and $k \leq u<k+q$. We have $G(c \otimes d)=\{[h, k]\}$, so by the previous theorem we get

$$
\begin{aligned}
v_{L}(\phi(c \otimes d)(x))-v_{L}(x) & \geq h-\left(-i_{0}-u\right) \\
& \geq h+i_{0}+k \\
& \geq h .
\end{aligned}
$$

Hence $\phi\left(X_{n-i_{0}}\right) \subset \mathfrak{C}_{n}$.

Characterizing $\mathfrak{C}_{n} \ldots$

On the other hand, suppose $\beta \in L \otimes_{K} L$ satisfies $\phi(\beta) \in \mathfrak{C}_{n}$.
By the previous theorem but one we get $a-\left(-i_{0}-b\right) \geq n$ for all $[a, b] \in G(\beta)$.

It follows that $h+k+i_{0} \geq n$ for all $[h, k] \in D(\beta)$. Hence $\beta \in X_{n-i_{0}}$. We conclude that $\mathfrak{C}_{n} \subset \phi\left(X_{n-i_{0}}\right)$.

