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Local Fields

Let K be a field which is complete with respect to a discrete
valuation vk : K* — 7Z, whose residue field K is a perfect field of
characteristic p. Also let

Ok ={a € K : v(a) >0}
= ring of integers of K
mk = uniformizer for Ok (i.e., vk(mx) = 1)

My =m0k

= unique maximal ideal of Ok

Let L/K be a finite totally ramified Galois extension of degree g, and
set G = Gal(L/K).



A Pairing on L[G]

By viewing elements of L[G] as K-endomorphisms of L we get an
isomorphism L[G] = Endk(L). If we replace L[G] with the smash
product L#K][G] this becomes an isomorphism of K-algebras.

Define a K-bilinear pairing L[G] x L[G] — K by

<Z a0, ) bUJ>L[G] =Y Trix(asbs).

oeG oeG oeG

It follows from the nondegeneracy of the trace pairing that (, )¢ is
nondegenerate.



A Pairing on L ®k L
Define a K-bilinear pairing (L ®x L) x (L ®x L) — K by setting
(a®b,c®@d)g = Trik(ac) - Trik(bd).

Then (, )g is well-defined.

Proposition

(, )e is nondegenerate.

Proof: Let {x1,x,...,x,} be a basis for L over K, and let A be the
matrix of the trace pairing L x L — K with respect to this basis.

Then the matrix B of (, )s with respect to the K-basis
{x®x;:1<1ij<q} for L&k Lis a Kronecker product of A with
itself. Since A is invertible, so is B.



The Maps ¢ and 1),

Let T = > o be the trace element of L[G]. Define a K-linear map
o€eG

¢: L@k L— L[G] by

p(a®@ b)=aTb= > ac(b)-o.

oceG

Then for a € L ® L we get

= Z Yy (a)o
ceG
For ¢ € L we have
p(a®@ b)(c) = > a-o(bc) = aTryk(bc).

oeG



@ is an isometry

Proposition
For o, f € L @k L we have (¢(c), ¢(5)) 116 = (@, B)e-

Proof: Let a,b,c,d € L. Then

(6(a @ b, 6(c & d)) 16 = <2 a0(b)o, 3 ca(d)a>
L[G]

oceG oceG

= Z TI’L/K(QC . O'(bd))

ceG
= Try/k(ac) - Tryk(bd)
=(a®b,c®d)g.

The claim follows from this.



@ is an isomorphism

Proposition

¢ is an isomorphism of K-vector spaces.

Proof: Suppose a € ker(¢). Then for all 5 € L ®x L we get

(o, B = (d(), d(8))Li6) = (0, ¢(B)) 1) = O.

Hence a = 0 by the nondegeneracy of ( , ). Therefore ¢ is
one-to-one.

Since dim(L ®x L) = dim(L[G]) = ¢ it follows that ¢ is also onto.



Some Lattices in L[G] and K[G]

Let /; and L be fractional ideals of ©O,. Define

Qt(l]_, /2) = Hom@K(Il, /2)
A(h, b) = &(h, h) N K[G]
A(h) =A(h, h).

Let ® = M¢ denote the different of the extension L/K.



Duals of Lattices

Definition

Suppose M and N are Ok-lattices in L. Let M* denote the dual of
M with respect to the trace pairing, and let (M ®¢, N)* denote the
dual of M ®¢, N with respect to ( , )g.

Lemma
Let M, N be Ok-lattices in L. Then (M ®¢, N)* = M* ®¢, N*.

Proof: Let {x1,..., x5}, {)1,--..Yq} be Ok-bases for M, N. Let
{x{5--oxa b Avi, .-+, yo } be the dual bases with respect to the
trace pairing. Then {x;® y; : 1 <i,j < q} is an Ok-basis for

M ®o, N, and {x; @y :1<10,j< q} is the dual basis with respect
to (, )g. Hence

(M ®p, N)* = Spang, {x/ @y :1<10,j< q} = M* ®p, N*.



Characterizing &(1, )

Proposition
P @ D) = €(h, b)

Proof: First,ifac b, b€ ® 1!, and x € I; then
¢(a® b)(x) = aTr k(bx). Since bx € D~ we get Tr,/x(bx) € Ok,
and hence ¢(a ® b)(x) € h. Thus ¢(hL @ D) C €(h, b).

Now let f € €(I1, ). Define
Of - @71/271 Kok h — Ok

by setting
Qf(a & b) = TrL/K(af(b))

Then 6 is an Ox-module homomorphism.



Characterizing &(h, ) ...

By the nondegeneracy of (, ) there is & € L ®k L such that
0r(8) = (a, B)e for all B € Dy ®o, h.

It follows from the lemma that
a€ (@ R0 h) =@ h") ®o i
— @—1(@—1/2—1)—1 ® @—1/1—1
= LoDt



Characterizing &(h, ) ...

We have f = > a,0 for some a, € L. For x € D711, y € h we

oeG
get

(0(a), o(x @ y))1je) = (@ x @ y)s
=0r(x®y)
= Trik(xf(y))
= Z TrL/K(aU -xo(y))

oceG

_ <Z 20, 3 xo(y)a>L[G]

ceG ceG

= (f, d(x @ y))16]-

Hence for all 3 € L ® L we have (¢(x), ¢(5))11q) =
follows from the nondegeneracy of ( , )¢ that ¢(«)

(_ ( )i It



A partial order
Let H=((q,—q)) <Zx Z

For (a, b) € Z x Z write [a, b] = (a, b) + H.

For [a, b, [c,d] € (Z x Z)/H say [a, b] < [c,d] if there is t € Z such
thata<c+tgand b<d — tq.

Lemma

Let [h, k], [a,b] € (Z x Z)/H. Then

[h, k] £ [a,b] & [a+1,b— g+ 1] < [h, K]

Proof: Suppose [h, k] £ [a, b]. We may assume that
h<a<h+qg—1. Then k> b+ 1. Hence

[a+1,b—qg+1]=[a—qg+1,b+1] <[h K]

The proof of the converse is similar.



Diagrams

We have coset representatives for (Z x Z)/H:

F={(a,b)eZxZ:0<b<q}
Let 7 be the set of Teichmiiller representatives of K.
Given 3 € L ® L there are a; € T such that

B= 3 amem.

(ij)eF
Define

R(B) =Ali.jl: (i,j) € F,a; # 0}

D(B) = {[h, k] € (Z x Z)/H : [i,j] < [h, k] for some [i,j] € R(5)}
G(B) = {[a, b] € D(B) : [a, b] minimal }.



Shifts Associated to [a, b] € G(f)

Theorem

Let f € L®k L and let [a, b] € G(/3). Then for all y € L with
vi(y) = —b — iy we have v (¢(B)(y)) = a.

Proof: It follows from the minimality of [a, b] that for all
[h, k] € D(B) ~ {[a, b]} we have [h, k] £ [a, b]. It follows by the
lemma that [a+1,b — g+ 1] < [h, k].

Therefore there are ¢;; € 7 and ¢ € T ~ {0} with

b-q+1y
B=cmi@n)+(mr o, "N grl e
i,j>0

Cb(ﬁ)(}/) - CWLTrL/K 7TLy Z i +1+ITr LK ( b— q+1+J}/).
i,j>0



Shifts Associated to [a, b] € G(f3) ...

Since vy (my) = —ip we have vk(Try/k(7Py)) = 0. Hence
vi(emiTryk(rLy)) =
In addition, since
vi(r " y) > —ip—q+1=—d

LIt y) € Ok, and hence

we have Tryx (7]
(e Try (e 7)) >

We conclude that v, (¢(5)(y)) = a.



Shifts of Endomorphisms of L

Theorem
Let 6 € L@k L with 3 #0 and let u € Z. Let b € Z be maximum
such that b < u and [a, b] € G(5) for some a. Then

min{v.(¢(8)(x)) : vi(x) = —ip — u} = a.

Proof: If b = u then the claim follows from the previous theorem.

Suppose b < u. Our choice of b implies that [a — 1, u] ¢ D(p).
Therefore for all [h, k] € D(3) we have [h, k] £ [a — 1, u]. Hence by
the lemma we get [a,u — g + 1] < [h, k].



Shifts of Endomorphisms of L ...

It follows that there are ¢; € 7 such that

B=(mer MY g @

ij>0
Let x € L with v, (x) = —ip — u. Then

P(B)(x) = 3" cymi T Try w9 x).

ij>0

Since _
vi(m T x) > —ip— g+ 1=—d

we have TrL/K(wz’_‘”Hjx) € Ok. Hence v (¢(8)(x)) > a.



Shifts of Endomorphisms of L ...

Suppose v, (f(x)) > a. There is y € L with
vi(y)=—io—b>—ip—u=v(x)

and hence
vi(o(B)(y)) = a < vi(¢(8)(x))

by the previous theorem. It follows that

VL(X +y) = —io —u
vi(B(x +y)) = vu(B(x) + B(y)) = a.

Hence we can choose x with v;(x) = —ip — u and v (¢(5)(x)) = a.



Some Definitions

For v € Endk(L) = L[G] set
Vi (y) = min{v (y(x)) — vi(x) : x € L*}.
For n € Z let
¢, ={vy € Endk(L) : ¥ (y) > n}.

Also let X,, be the Ox-submodule of L ®x L generated by all
elements of the form ¢ ® d, with v,(c) + v.(d) > n.



Characterizing €,

Theorem
Let n € Z. Then ¢(X,—;,) = €.

Proof: Let c® d € L® L with v,(c) = h, v.(d) = k such that
h+k > n—iy. Let x € L* satisfy v/ (x) = —ip — v and

k < u< k+ q. We have G(c ® d) = {[h, k]}, so by the previous
theorem we get

vi(¢(c ® d)(x)) — vi(x) = h— (—io — u)
>h+ip+k
>n.

Hence ¢(X,—;,) C €.



Characterizing &, ...

On the other hand, suppose 5 € L ®x L satisfies ¢(3) € €&,.

By the previous theorem but one we get a — (—ip — b) > n for all
[a, b] € G(5).

It follows that h+ k + ip > n for all [h, k] € D(5). Hence 8 € X,_;,.
We conclude that €, C ¢(X,—j)-



